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ABSTRACT: Conventionally, agent-based models are specified in a combination of natural lan-
guage and mathematical terms, and their implementation seen as an afterthought. I challenge this
view and argue that it is the source code that represents the model best, with natural language and
mathematical descriptions serving as documentation. This modeling paradigm is inspired by agile
software development and adopting it leads to various - mostly beneficial - consequences. First, dis-
crepancies between the specification documents and what the model actually does are eliminated by
definition as the code becomes the specification. Second, replicability is greatly improved. Third,
object-oriented programming is recognized as an integral part of a modeler’s skill set. Forth, tools and
methods from software engineering can support the modeling process, making it more agile. Fifth,
increased modularity allows to better manage complexity and enables the collaborative construction
of largemodels. Sixth, thewaymodels are published needs to be reconsidered, with source code ideally
being part of the peer review. Seventh, the quality of source code in science is improved as it enjoys
more importance, attention and scrutiny.
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1 INTRODUCTION

The specification and the implementation of computer programs were traditionally seen as distinct,
sequential activities. Similarly, the specification and the implementation of agent-based models are
usually seen as distinct, sequential activities. However, while software engineering moved on, agent-
basedmodeling is still mostly done the traditional way. Inmodern software engineering, specification
and implementation are closely integrated. Instead of completing the design upfront, the design is
seen as emerging from incremental improvements of the program embodied by its code. There is no
separate design document any more. Instead, the code is the design – an insight first described by
Reeves (1992). I apply this insight to the process of agent-based modeling, leading me to question
the conventional separation of specification and implementation and to boldly claim “the code is the
model”.1

Seeing the code as the model allows to build and refine agent-based models iteratively while program-
ming, as opposed to writing down their specifications on paper first. It further implies that editing
and adapting the model is done by editing and adapting its source code. The model as specified by
the code becomes the primary deliverable, with accompanying papers focusing on the documenta-
tion of specific insights. This is in accordance with the principles of theAgile Manifesto by Beck et al.
(2001), which had a profound impact on modern software engineering. Agile software development
is a fundamentally pragmatist methodology that prioritizes people over processes, working software
over documentation, collaboration over negotiation, and responding to change over plans.

Agile as a methodology is not undisputed. To a certain degree, it has become the victim of its own
success. In a presentation titled “Agile is Dead”, Thomas (2015), who is one of the authors of the
agile manifesto, laments that some of the originally good ideas have been turned into rituals that are
blindly followed without deeper understanding, thereby perverting the spirit of the manifesto. This
paper sticks to the original insights of agile, with a focus on tight feedback loops and the cost of change.
This focus is inspired by Fowler (2001), another author of the manifesto.

After diving deeper into the driving forces behind modern software engineering in section 2, each of
the consequences listed in the abstract is described in its own section, concluding with the impact
on software quality. They can be read in any order as the core insights are shortly repeated where
necessary. The ideas and methods found in this paper are not intended to be followed blindly, but to
serve as an inspiration on how to successfully build non-trivial agent-based models.

2 AGILE SOFTWARE DEVELOPMENT

“Probieren geht über Studieren” (Trying beats pondering).
- German proverb
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While classic engineering focuses on ensuring high quality upfront, agile software development fo-
cuses on fast iterations and testing ideas quickly. At first sight, that looks like chaotic trial-and-error.
It feels more comfortable to do traditional, sequential designwith a clear separation between the spec-
ification and implementation stage. So what went wrong with software engineering? In order to
understand agile development, one needs to consider the driving forces behind it, most notably the
diminishing returns of upfront design.

Themain driving force thatmakes itworthwhile to spend time onupfront design is the cost of correct-
ing errors later (Fowler, 2001). An error in the design of a bridge can be extremely costly. Thus, it pays
off to spend a lot of time upfront on planning before actually building the bridge. The question is:
how does that change when the cost of building decreases? In the most extreme case of having robots
that can automatically tear down and build bridges over night for free, one would certainly make use
of that capability and rebuild the bridge a few times until it looks and functions as desired. Adding
automatic testing of the bridge’s properties brings this analogy quite close to the state of modern soft-
ware engineering. When ideas can be tried out quickly with minimal effort, the returns of upfront
planning diminish.

A second driving force behind modern software engineering is the dynamic environment in which
it takes place. Evolving requirements and a continuous inflow of ideas further diminish the value of
upfront planning. In the nineties, computer programswere supposed to last for yearswithout updates
and were built within the scope of software projects. A project is an organized endeavor with a start
and an end. But web services like Google or Netflix are never finished, and thus do not fit the most
basic premise of a project. Instead, they are continuously improved. Facebook’s continuous delivery
system pushes out an update every eight hours, as Rossi (2017) describes. This stands in stark contrast
to the multi-year release cycle of traditional software. The ability to seamlessly deliver frequent and
automatic updates decreases the cost of change further and allows to dynamically respond to evolving
circumstances. In such an environment, “plans are nothing, planning is everything”. This core insight
of the agile manifesto was already formulated by Dwight Eisenhower, although in a different context.

A third important difference to classic engineering is that no one is constructing anything physical. In-
stead, both the architects and the programmers are engaging in a design activity, just at different levels
of abstraction. This blurs the distinction between design and implementation, begging the question
whether it makes sense for them to use different languages, different tools, and different processes.
Since the language and tools for the implementation stage are given, the only option to get the high-
level design and the low-level design closer is to increase the use of low-level tools in high-level design,
for example by directly specifying a class hierarchy in source code instead of using UML diagrams.
Attempts to do the opposite, namely to use high-level tools to do low-level design, tend to fail. The
simple and effective high-level tools are not powerful enough to completely specify a software, and the
high-level tools that are powerful enough tend to get more complex than the source code they were
intended to replace. The cleanest way to formulate an algorithmic model is and stays plain source
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code.

These three forces have contributed to the rise of extreme programming (Beck, 2000) and the creation
of the agile manifesto (Beck et al., 2001). It acknowledges good design as something that emerges over
time, and not something that can be fully specified upfront. The specification and the implemen-
tation phase are combined, thereby accelerating the development process and allowing for fast, agile
iterations of collecting feedback and improving the software. It does not mean that there shouldn’t
be any design or other high-level planning, it just means that design and implementation should be
closely integrated. Under agile software development, the source code is the only complete specifi-
cation of the software. Other documents, such as protocol specifications, class diagrams or natural
language descriptions, are still useful and often necessary to convey the high-level intent behind a pro-
gram, but they are mere means to an end. The code is the primary deliverable and working software
is the primary measure of progress.

3 MODEL SPECIFICATION

“An idea is nothing, its implementation everything.”
- Alexander Kronrod (Landis, Yaglom, Brudno, Gautschi, & Senechal, 2002)

The insight that the source code of an agent-based model can serve as its specification is not new.
Miller and Page (2007) state on page 76: “The actual computer code itself is a complete specification
of the model, but there is a big difference between a complete specification and an accessible one.”
Furthermore, code is not academically publishable. This has lead researchers to seek for alternate ways
of specifying agent-based models in their publications.

The most common approach is to specify the model in natural language, supported by mathemat-
ical equations where appropriate. One example of this approach is the financial leverage model by
Thurner, Farmer, and Geanakoplos (2012). I mention this specific model because I reimplemented
it and successfully reproduced its results. In that case, the exact sequence of events is not perfectly
clear from the paper, exemplifying that it is very hard to write a complete specification without using
programming languages. Still, the description is good enough to reproduce the results qualitatively
with adequate effort. I successfully did the same for other simple agent-based models, indicating that
this type of specification works reasonably well in simple cases. Accordingly, Miller and Page (2007)
recommend to strive for simplicity in order to increase accessibility and to make sure the model can
be fully specified within the scope of a paper. However, not all models of interest are simple.

Grimm et al. (2006) observe that the above approach often leads to unsatisfactory model descrip-
tions, for example “not including enough detail of the model’s schedule to allow the model to be
re-implemented”. As a remedy, they propose the ODD protocol and later refine it in Grimm et al.
(2010). The ODD protocol specifies a program by creating two tables, one with all the variables and
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one with all the functions. They believe that: “Once readers know the full set of (low-level) state vari-
ables, they have a clear idea of the model’s structure and resolution.” By doing so, Grimm et al. tear
apart the object-oriented design, as they note themselves. The design of software often is hierarchical,
with multiple encapsulated layers at different levels of abstraction, allowing the reader to focus on the
functionality of interest. By pushing its components into a flat list, the essence of the program can get
lost and its accessibility is reduced. Also, theODD requirement of including every detail canmake the
specification overly lengthy. For example,Wolf et al. (2013) note that “a description of a Lagommodel
that strictly followsODDwould easily fill 50 to 80 pages.” Like the other attempts before it, theODD
protocol suffers from the typical symptoms of trying to specify algorithmic models in something else
than a programming language.

Accepting the futility of providing a complete specification of non-trivial models using the previously
mentioned methods, about one in ten authors resort to pseudo-code (Janssen et al., 2017). Pseudo-
code is well-suited to specify short algorithms of up to 25 lines of code within a paper. It is often used
in computer science, for example by Flajolet, Fusy, Gandouet, and Meunier (2007), where the focus
is on the mathematical analysis of algorithms as opposed to building software. However, pseudo-
code is impractical for larger models and I advise against creating pseudo-code attachments. There
is no guarantee that it matches the actually executed code. For example, Gualdi, Tarzia, Zamponi,
and Bouchaud (2015) follow this practice, but the parameter δ = 0.2 in the pseudo-code does not
match the actual value from the source code, where it is 0.02.2 Furthermore, it is questionablewhether
pseudo-code is more accessible than well-written code in a real programming language. In the end,
the original code is the ultimate reference. That is also whymany journals encourage providing source
code as supplementary download, a practice followed by another 10% of authors according to Janssen
et al. (2017). Ideally, the code resides in a browsable web repository, so it can be inspected without
downloading or installing anything.

Agent-based models are fundamentally algorithmic and often of non-trivial size. Furthermore, they
can be very sensitive to small changes, so providing incomplete specifications is not an option. There-
fore, the cleanest way to specify agent-based models is to use source code. All other artifacts, such as
flow charts, UML diagrams, natural language descriptions, ODD tables, andmathematical equations
can be suitablemeans to describe themodel at a higher level, but not to fully specify it. If an interested
reader wants to know about the complete model in all its details, she should consult the source code,
with the paper serving as a guide. “In software development, the design document is a source code
listing” (Reeves, 2005).

4 REPLICABILITY

Replicability is the foundation of empirical science. It enables the independent verification of exper-
iments and to reliably build new theories on top of existing knowledge. Despite its importance, the
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replication of results often is harder than it should be. Chang and Phillip (2015) try to reproduce the
results of 67 economics papers published in a selection of 13 reputable journals. They could only repli-
cate 33% of themon their own, and an additional 10%with the authors’ assistance. The primary reason
for a failure to replicate results was missing software or data – even for journals that in theory have a
policy of requiring source code and data. This section discusses how seeing the code as the model
improves replicability and provides a replicability checklist.

By seeing the code as the model, the code becomes the specification. Thereby, replicating an agent-
based experiment becomes trivial in theory. All that needs to be done is compiling and running the
code. The tedious and error-prone step of translating a natural language specification found in a paper
into source code can be skipped.3 However, the devil is in the detail. The author needs to properly
prepare and document the software and its configurations in order for this to work smoothly. When
running the simulation, the exact results reported in the paper shouldbe deterministically reproduced.
Axtell, Axelrod, Epstein, and Cohen (1996) call this level of replication numerically identical.

To go beyond numerically identical replication, one could even make sure that not only the raw nu-
merical results are automatically reproduced, but also the charts and statistics shown in the paper.
While this is a nice feature for readers and reviewers when playing with the simulation, its main ben-
efit is for the author herself. In practice, she is often the one who is most likely to later reproduce the
results. For example, when refining a paper or preparing a presentation, the ability to regenerate the
charts of interest or slight deviations thereof with a few clicks can save a lot of time. Good replicability
is not only desirable as a final outcome, but also accelerates themodeling process itself as it reduces the
cost of trying out model variants and comparing them with each other.

The key tool for replicability is a good version control system. My systemof choice isGit, whichBruno
(2015) reviews in the context of computational economics. A version control system keeps a history of
all changes made to the source code. Each time the programmer commits a change to the repository, a
snapshot is made and the history grows by one entry. The space needed for a single snapshot usually is
negligible, as only the difference to the previous snapshot is stored. Ideally, the programmer comments
each commit, thereby implicitly creating a lab journal. Keeping a lab journal is also recommended by
Miller and Page (2007). Figure 1 shows a screenshot of browsing the commit history of JABMwritten
by Steve Phelps, one of the authors that publish their source code in a public Git repository. Today,
commit comments are mostly technical, but they would also be an excellent way to shortly document
scientific considerations.

By default, each step in the change history is identified with a unique fingerprint. Tomake themmore
accessible, significantmilestones of a program are usually labeled with a human-readable tag. Tags can
also be used to switch between different versions of a software or to compare them. When working
with an agent-based model, each time the model is used to generate significant results, that particular
version of themodel including its inputs and outputs should be tagged. Thatway, the latest version of
themodel can be changed and improved without the risk of breaking the replicability of older results.

Meisser The Code is the Model



International Journal ofMicrosimulation (2017) 10(3) 184-201 190

Figure 1: A Git client

This screenshot shows how the Git client SourceTree lists changes Steve Phelps made to the Java Agent-Based Modeling library (github.com/phelps-
sg/jabm), which was used to produce the results presented in Caiani et al. (2014) and Caiani et al. (2015). The selected commit to the yellow branch with
fingerprint c282914 apparently fixed the size counter of a list of agents named AgentList. When not only commenting on technical decisions, but also
modeling considerations, Git can serve as electronic lab journal that is tightly linked to the relevant source code.

They are preserved as their own, tagged snapshots.4

Authors should adhere to the following checklist to ensure replicability and to increase accessibility:

1. Your paper must contain a high-level description of the model.

2. Your paper must link to the model’s source code. Preferably, the code is hosted in a browsable
web repository such as github.com.

3. Along with the link to the code, the fingerprints (hash) of the discussed versions should be
provided. This proves that the code was not changed after the submission of the paper.

4. Your code must include a readme file with instructions on how to compile and run the simu-
lation. This should include the program inputs and the expected outputs for each discussed
result.

5. Your simulation should be deterministic. Running the same configuration twice should yield
the exact same result.

6. You should specify under which conditions the code can be reused, for example under theMIT
license (MIT, 1988). Academic use under the condition of proper attribution must be permit-
ted.

7. You should encourage others to clone your model into their own repositories in order to im-
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prove long-term availability. Prominently add the title of your paper to the readme file so the
repository can be found with a web search even when the original links are broken.

8. The tools and libraries required to compile and run the software should be freely available for
academic use. For example, Jupyter notebooks should be preferred over Mathematica note-
books.

9. You are encouraged to cross-reference the paper from the code and vice versa. In particular, you
should make clear how the variable names from the paper (usually single-lettered) map to the
ones in the code (should be long and descriptive).

10. Keep your model simple and accessible by following the hints given in Section 5.

5 OBJECT-ORIENTED PROGRAMMING

“Programming frees us to adapt the tool to the problem rather than the problem to the tool.”
- Leigh Tesfatsion (2006)

While models can be specified in any sufficiently powerful language, its choice visibly impacts the end
result, even when the model’s motif stays the same. Generally, the cleanest way to specify equation-
basedmodels is to usemathematical terms, and the cleanest way to specify algorithmicmodels is to use
a programming language. This section discusses how object-oriented design and good programming
can make a model’s specification more accessible.

The family of object-oriented languages seems a particularly good fit to formulate agent-basedmodels.
Dahl andNygaard (1966) invented the first object-oriented programming language Simula to provide
humans with an intuitive abstraction to write simulations. Incidentally, objects also are an excellent
abstraction to manage complexity by encapsulating separate concerns, making object-orientation the
most popular programming style by far today. As Tesfatsion (2006) points out, object-orientation
resembles agent-based modeling. Individual agents act in accordance with private beliefs, which they
update by observing local information. Both agents andobjects are about encapsulating the state of in-
dividual entities, putting data and the functions that operate on that data together. Object-orientation
fits very well with agent-based modeling and provides proven abstractions for managing complexity.

Besides supporting object-oriented design, today’s programming languages also operate at a higher
level of abstraction than older languages. Memory management and pointer arithmetics are not nec-
essary any more, increasing accessibility. Also, object-orientation helps with the hierarchical organi-
zation of the software. Nonetheless, the programming skills of a modeler can make an enormous
difference in accessibility. While it often takes programmers many years of experience to fully develop
their skills, there are some basic rules that help writing simple and accessible code:

1. Keep your code clean and simple. Its purpose is not to show how smart you are, but to provide
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an accessible formulation of your model to others and your future self. Given two options,
choose the one that astonishes your readers the least.

2. Split code into small unitswith descriptive names. For example, one should split large functions
into multiple small ones even if they are only called from one place. The purpose of a function
is not to enable the reuse of its code, but to structure the program nicely. The same applies to
classes.

3. Choose the simplest tool that does the job. Youwon’t need gimmicks like dependency-injection
frameworks or aspect-oriented programming. They are often poorly supported by the devel-
opment environment and tend to make relevant information less accessible.

4. Avoid premature generalization: do not write a function to draw polygons if all you need for
now is rectangles.

5. Avoid premature optimization: Your first priority is to get things right. You can still optimize
later if necessary. Most of the time, it is not. “Premature optimization is the root of all evil”
(Knuth, 1974).

6. “Favor object composition over class inheritance” (Gamma,Helm, Johnson,&Vlissides, 1994).
Beginners tend to overuse inheritance in object-oriented programming. Prefer composition
instead.

7. Choosing a popular programming language increases accessibility. As a social scientist, you do
not need to be at the bleeding edge of computer science, you can relax and build on proven
technology that is broadly understood.

8. Avoid low-level languages such as C or Fortran. Java and C# are similarly fast and have fewer
pitfalls. Python and other dynamically typed languages can be an excellent choice for small
projects below 1000 lines of code, but are usually an order of magnitude slower — a personal
observation that is confirmed by benchmarks such as Gouy (2017).

9. For larger projects, prefer a statically typed language, allowing you to painlessly refactor (re-
structure, rename, move, etc) your code as the model evolves (Fowler & Beck, 1999).

10. Avoid cargo cult programming: do not blindly follow conventions without understanding
them. This includes everything you read in this paper.

Agent-based modelers with moderate experience should be able to formulate their models in code
such that it is accessible to other researchers with a similar skill-level. Source code cannot replace high-
level descriptions, but it should be the preferred way to provide the full model specification. Keeping
code clean and concise requires some effort from the author, but pays off quickly thanks to lower costs
of change and increased agility.
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Figure 2: Waterfall modeling.

Notes: This diagram depicts the waterfall view of the modeling process of a computer simulation and its accompanying paper. It is highly idealized
and hard to follow in practice. There is no indication on how to handle errors or how to otherwise refine the initial idea. Yet, this is often how the
development process is implicitly assumed to work.

6 MODELING PROCESS

“The only way we validate a software design is by building it and testing it. There is no silver bullet,
and no ’right way’ to do design. Sometimes an hour, a day, or even a week spent thinking about a

problem can make a big difference when the coding actually starts. Other times, 5 minutes of testing
will reveal something you never would have thought about no matter how long you tried. We do the

best we can under the circumstances, and then refine it.”
- Jack Reeves (2005)

Seeing the code as the model allows to fully leverage all the tools and methods of agile software engi-
neering in the modeling process, a selection of which is described in this section. The key is again to
decrease the cost of change, thereby improving agility. This is mostly done by creating tight feedback
loops to accelerate the detection of errors at all levels of abstraction, thereby enabling the modeler to
identify and refine her best ideas faster.

The traditional modeling process is illustrated in Figure 2. The underlying assumption is that the de-
sign and the implementation are separate. Specification documents are created upfront and translated
into source code at a later stage. The advantage of this separation is a higher degree of specialization.
The designers of the model do not need to be fluent programmers. However, the price of this separa-
tion is a slowermodeling and refinement process. Also, it comes with a higher risk of ideas getting lost
in translation, asWilensky andRand (2007) already pointed out. The cycle from idea to specification,
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Figure 3: Agile modeling.
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Notes: This diagram presents a more realistic view of the modeling process, incorporating tight feedback loops to decrease the costs of testing ideas.
Formal specifications got replaced with a set of temporary documents that help communicating and refining ideas. Unlike before, ideas can also be
formulated directly in a programming language. From there, three feedback loops around different classes of errors help to decrease the time it takes to
ensure the code works as intended. Once it does, the simulation outcome is used to refine the initial idea, closing the outer, bold feedback loop. Each
time it is completed, the modeler learns something about her model and assumptions.

to implementation, to validation, and then back to the idea stage of the next version of the software
takes a lot of time and resources. Accordingly, Miller and Page (2007) state on page 252: “An error in
the design stage costs ten times more to correct in the coding stage and a hundred times more to fix
after the program is in use.” Consequently, traditional engineering tries to avoid having to return to
the specification stage and aims at getting things right on the first attempt. In practice, this is rarely
the case.

In contrast to that, agile software engineering embraces the aforementioned cycle and minimizes the
cost of going through it. If done right, the above quote from Page andMiller no longer holds. Figure
3 depicts a more realistic modeling process that incorporates these insights. It allows to test and refine
ideas much faster than before. Key is the creation of tight feedback loops around the various classes
of errors and to automate them as much as possible. The modeler is still encouraged to refine ideas
upfront,maybewith the help of diagrams, calculations, notes, charts, andother temporary documents
that aid the thought process. But she is also free to try out ideas by adjusting the code directly. The
feedback loop from idea to code, to validation and back to refining the idea is much tighter. However,
thismust not be understood as an invitation to do quick and dirty coding. Instead, codemust be tidier
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and better structured than under the traditional process. Otherwise, the gained agility is quickly lost
again as the complexity of the codebase grows out of hand.

First, timemust be invested into regularly refactoring the code, keeping the code clean, accessible, and
modular (Fowler&Beck, 1999). Fortunately, IDEs such as Eclipse allow to seamlessly renamevariables,
move classes, extract interfaces, and perform many other refactorings without much manual labor.
One should also not hesitate to remove unused parts of the model. If needed again later, they can be
restored from the versioning system. Refactoring aims at improving the design of the code, thereby
allowing to perform changes (including further refactoring) at a lower cost.

Second, one should automate the feedback loops around all three classes of errors shown in Figure 3 as
much as possible. This is trivial for syntax errors that are detected on the fly and thus can be corrected
within seconds. At the next level, the modeler should create a suite of unit tests to verify the behavior
of individual classes. They should be triggered automatically whenever a change ismade, such that the
programmer is notified within seconds after introducing an error. However, it also takes some effort
towrite andmaintain good units tests, so there is a trade-off.5 At the very least, one should create a test
that simply runs the simulation after every change. This works especially well whenmaking extensive
use of assertions as described next.

Third, one should follow the fail fast principle discussed in Shore (2004). Errors are much easier to
detect in programs that fail hard and visibly upon encountering something unexpected than in pro-
grams that silently ignore the unexpected. For example, when implementing a function that operates
on a list under the implicit assumption that this list is ordered, one should check the ordering in the
beginning of the function and let the program crash in case of a violation. The alternative of letting
the function ignore such a problem might lead to subtle and hard to detect errors. Another example
would be a test for stock-flow consistency in an economic model after every simulation step. Asser-
tions combine very well with automated tests, enabling the detection of errors within seconds after
having unwittingly introduced them.

While automated testing allows the code to quickly converge towards its intended behavior, frequent
and automated tests of scientific models can introduce the risk of overfitting. Non-trivial model are
especially susceptible to this problem as they often have countless adjustable parameters. Sometimes,
this can be addressed by testing the outcome against abstract theories, based on which one can cre-
ate an unlimited number of test cases. For example, one could test whether prices in an economic
simulation converge towards what classic theory predicts. Another good idea is to test the behavior
of each agent on its own for certain reasonable criteria. That way, one can decrease the degrees of
freedom significantly before testing the whole model against empirical data or the expectations of the
researcher.

For larger software projects withmany stakeholders, the process outlined in Figure 3 is too simplistic. I
intentionally skipped practices like Scrum that are primarily concernedwith the organization of teams
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and the rhythm of iterations. For individual researchers, they are less relevant. Researchers are usually
their own managers and customers, diminishing the need for formalizing their communication. I
refer interested readers to The Cathedral and the Bazaar by Raymond (1999), which introduced the
principle “release early, release often”, Schwaber and Beedle (2002) for an introduction to Scrum, and
Meyer (2014) for a more broad and critical review of agile methods.

7 MODULARITY

The hierarchical structure of source code is better suited for describing large, modular systems than
the linear structure of a paper or the monolithic structure of equation systems. And goodmodularity
is the key tomanage complex systems. Well-modularized systems aremore accessible, more robust and
easier to change thanmonolithic systems. Like object-orientation, modularity is about encapsulation,
but at a higher level of abstraction. At this higher level, the rules of good design can be different, and
the object-oriented principle of keeping data and functions together is less important.

In economics, thedifferencebetween the structure of agent-basedmodels and the structure of equation-
based models resembles the difference between decentralized and centralized planning in The Use of
Knowledge in Society by Hayek (1945). With equation-based approaches, a model consists of a mono-
lithic equation system that is solved by a central planner. However, just like Hayek’s central planner
in the real world, such models struggle at incorporating diverse knowledge and are usually based on
radically simplified assumptions. Farmer and Foley (2009) criticize conventional economic models as
follows: “Even if rational expectations are a reasonable model of human behavior, the mathematical
machinery is cumbersome and requires drastic simplifications to get tractable results.” The design of
large-scale systems that are easy to change is futile without good modularity.

In contrast tomathematicalmodels, algorithmicmodels aremuchmore versatile and better at embrac-
ing complexity. A clean separation of concerns allows to implement and test modules independently,
without having to care much about the rest of the program, thereby significantly reducing the mental
load of the programmer. In a well-modularized system, the consequences of a local change should
be locally contained and not render the whole model unusable. Proper encapsulation ensures that a
change at one end of themodel does not adversely impact something seemingly unrelated at the other
end. With monolithic mathematical models, often the opposite is the case.

Anthropologists would probably say that mathematics is a high-context culture, while software engi-
neering is a low-context culture. A typical mathematical equation with its single-letter variables and
functions requires a high level of context for correct interpretation, whereas software engineering en-
courages the use of long descriptive names and the creation of small digestible units of thought that
canbeprocessedon their own. Generally, low-context systems aremore accessible to outsiders as every-
thing is explicitly stated, thereby reducing the amount of prior knowledge required for understanding
and adjusting them.
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Besides helping both the humanbrain aswell as the computer at handling complexity, modularization
also enables the collaborative creation of large-scale models. Withmonolithic models, every contribu-
tor needs to understand everything. With modularized models, contributors just need to understand
how to interactwith the rest of themodel and can otherwise treat it as a black box. Modularization also
facilitates the reuse of components by others, which usually is impractical at the scale of objects. But
similar to object-orientation, the primary goal of modularity is not to enable reuse, but to structure
the software well.

8 PUBLISHING

What are the implications of seeing the code as themodel for publishing? While journals can continue
their established format and focus on the publication of insightful papers, they shouldmake sure that
the underlying source code is openly available. Good journals should also ensure that papers based on
agent-basedmodels follow the replicability checklist from section 4. Furthermore, replicability should
be verified as part of the peer-review process, and ideally also the code reviewed. In the following, these
recommendations are discussed in more detail.

As reasoned in section 3, the specification of an agent-based model is its code. As such, it must be
provided to the readers. Chang and Phillip (2015) recommend making the provision of source code
and data a strict condition for publication in all journals. However, code does not fit the format of
journals and should thus be provided externally in a suitable web-based repository. Publishers do not
have the infrastructure to properly host source code and some have a questionable track record when
it comes to keeping links alive.6 Thus, source code should be hosted with a purpose-built service like
Github, which also allows to comfortably browse the code online. The easier it is to gain insights by
inspecting source code, the more researchers will do so.

Unlike blogs and other native web-formats that are first published and ranked later by services such as
Google, academic papers are first reviewed and then published. During the review process, experts de-
cide in advance which papers are noteworthy and which are not. Academic journals provide a curated
selection of papers that adhere to a high standard, with replicability being an important part of that
standard. Consequently, reviewers should try to replicate the simulation results and journals should
refuse the publication of papers whose results cannot be replicatedwith reasonable effort. Sometimes,
a reviewer might not be able to run the simulation due to hardware or other practical constraints, but
such cases should be the exception.

Services such as zenodo.org allow authors to create DOIs (digital object identifiers) for their source
code and data. So in theory, it would be possible to refer to code directly. This can make sense when
discussing an implementation detail that can only be found in the code. But generally, one should cite
articles and not source code. This is also often preferred by the authors. For example, the authors of
JAS-mine ask their users to cite Richardson and Richiardi (2016) when using their software, and not
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the code itself.

Overall, seeing the code as the model is largely compatible with today’s established publishing pro-
cesses and in line with the trend of requiring the provision of source code when publishing an article
based on an algorithmic model.

9 QUALITY

In agent-based modeling, high code quality is particularly important because agent-based models of-
ten react sensitively to small changes. As complex systems, they are susceptible to subtle errors. That
makes it difficult to be confident whether an observed phenomenon represents a fundamental insight
into the simulatedmatter orwhether it is just an artifact of a low-level design decision. The best way to
increase confidence in themodel is to strive for high-quality code that yields replicable results and that
is easy to change. The lower the costs of change, they easier it is to test the robustness of the results. If
agent-based modeling wants to move beyond generating vague, stylized facts, there is no way around
high-quality code.

As an economist, I am trained to consider the incentives. Today, there are barely any incentives to
write well-structured code beyond what is necessary to get the job done. The traditional solution to
this problem is to detach the specification from the code and to provide it in a separate, more visible
document, so that the structure of the model is scrutinized as part of the traditional review process.
As discussed in section 3, such specification are rarely complete and accurate in practice. The better
solution is to direct more attention to source code, thereby creating a strong additional incentive for
the author to structure it well and in an accessible way.

The measures discussed in the previous section 8 already are a good first step for drawing more atten-
tion to a model’s code. When authors know that their chances of publication are increased by pro-
viding source code of high quality, they will try to do so. Ensuring replicability and accessibility starts
to pay off beyond satisfying the intrinsic motivation of the author. Besides that, I expect models to
increase in quality when their code is reviewed. Code reviews are widespread in software engineering
and have been shown to decrease the defect rate significantly (Kemerer & Paulk, 2009).

Once researchers start to pay attention to each other’s source code, a set of best practices and design
patternswill emerge as they learn and copy fromeach other, further increasing accessibility andquality
in general. Common design patterns help in reviewing code faster, just as reviewer today can skipwell-
known mathematical proofs that they have seen many times before. This creates a positive feedback
loop ofmore attention leading to better code, and better code allowing the attention of reviewers to be
used more effectively. Hopefully, seeing the code as the prime way to formulate a model contributes
to the advent of a new generation of high-quality agent-based simulations that yield more useful and
better verifiable results.
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NOTES

1Amore agreeable but less catchy variant of this claim is: “Source code is the best way to formulate an algorithmic model,
just like equations are the best way to formulate a mathematical model.”
2I thank Stanislao Gualdi for providing me with the source code, which allowed me to discover this discrepancy. The
correct value δ = 0.02 is also mentioned elsewhere in the paper, so this is only a typo in the pseudo-code listing.
3In contrast, Müller et al. (2014) write: “although the provision of source code technically facilitates model replication, it
may circumvent the consistency check between the conceptual model and its implementation (one purpose of model
replication) by encouraging replicators to simply copy the source code.” Detecting errors in an experiment’s description
and in the interpretation of its outcome certainly is important, but independent of replication. Replication aims at
doing what the original researchers actually did, and not what they intended to do.
4For larger simulations, it might also be worthwhile to not only work with tags, but to create entire branches for each
publication. A branch forks the change history of a project into two paths and allows to adjust one branch of the project
without affecting the other. That way, one can create a clean copy of the simulation that only contains what is strictly
needed to reproduce the discussed results, making the code leaner and increasing its accessibility. Generally, branches
allow a software to develop into two different directions or having versions that evolve at different speeds, making the
development process more flexible. However, it is also a somewhat advanced feature and merging branches later can be
troublesome. Tags already suffices in many cases.
5Some developers take testing to the extreme and do test-driven development, which requires to specify the behavior of
each piece of software upfront through a test before writing its actual code. However, this can also go against the spirit of
agile. Tests increase agility by reducing the risk of change, but they also reduce agility as changes need to be implemented
twice. These developers often also demand “100% test coverage”, which means that every line of code is executed at least
once during testing. But that still does not guarantee that the code is correct, so it is a somewhat misleading metric. Also,
one should note that in a majority of cases where a unit test fails, it is the test that needs to be adjusted, and not the actual
code. This is a consequence of test code having lower quality requirements than model code.
6For example, Gatti, Desiderio, Gaffeo, Cirillo, and Gallegati (2011) encourage readers to visit
www.springer.com/series/9601 for further information on the last page of their book, but Springer seems to have broken
that link.
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